AGF 3000

The AGF 3000 was specially developed to supply compressed air filters per ISO 12500 until the compressed air filter is saturated. The AGF 3000 system comprises an aerosol generator and an automatic refill unit.

The AGF 3000 is equipped with a binary nozzle developed by Palas $^{\mathbb{R}}$, which can also achieve high mass flows of up to 29 g/h. The AGF 3000 aerosol generator is designed to be pressure-resistant with 10 bar inlet pressure and 7 bar outlet pressure.

BENEFITS

- Pressure-resistant 10 bar inlet pressure and 7 bar outlet pressure
- For continuous loading with refill unit
- High mass flow of up to 29 g/h
- Minimization of compressed air filter loading time
- Very exact volume flow control with use of mass flow controller

APPLICATIONS

- ISO 12500
- Testing compressed air filters
- Loading compressed air filters

DATASHEET

Volume flow	10 – 70 Nl/min	Mass flow (particles)	4 – 29 g/h
Filling quantity	Approx. 7,000 l	Aerosol outlet connection	$\emptyset_{\text{inside}} = 26 \text{ mm}, \emptyset_{\text{outside}} = 29 \text{ mm}$
Mean particle diame- ter (number)	0.4 μm (DEHS)	Dimensions	180 • 240 mm (Ø • H, AGF 3000) 240 • 440 mm (Ø • H, refill unit)
Weight	AGF: approx. 4 kg, refill unit: approx. 10 kg	Special features	Pressure-resistant up to 10 bar (overpressure), automatical refill unit

NORMS AND CERTIFICATES

ISO 12500