MMTC 2000 E

In this version, the filter holder MMTC 2000 E is made of V2A in order to cover a higher temperature range.

BENEFITS

- Internationally comparable measurement results thanks to the widespread use of the MMTC 2000 measurement system
- · High reproducibility of the testing method
- Different dusts from real applications can be used
- Quick and easy adjustment of the raw gas concentration
- Simulation of the so-called garland effect
- Suitable for in-situ measurements
- Online measurements of the particle size and particle concentration with the light scattering spectrometer welas® digital
- MMTC 2000 EHF: This test rig can be heated to 250°C; the relative humidity can be set to levels up to 80% (at a temperature of 90°C).
- Lightweight, small, and mobile design
- Easy handling, easy cleaning
- $\bullet \;\;$ Quick set-up time when changing the filter or test dust
- Validation of the clear function of individual components and the overall system during pre-delivery acceptance testing
- · Reliable operation
- Short set-up times, extremely low-maintenance
- The unit will reduce your operating costs

APPLICATIONS

- Standardized test in accordance with VDI 3926
- Individual tests under close-to-real conditions as defined by the different process conditions, e.g., in the cement industry, wood-processing industry, pharmaceutical industry, chemical industry, nuclear power plants, and many other areas...

DATASHEET

Aerosols	Dusts (e. g. SAE dusts)	Test area of the medium	177 cm ²
Volume flow	$1 - 5.5 \text{ m}^3/\text{h}$ (others on request, suction mode)	Power supply	120 – 230 V, 2A (single phase connection)
Differential pressure measurement	0 – 5,000 Pa	Inflow velocity	3 – 8.8 cm/s (others on request)
Compressed air supply	6 – 8 bar	Powder Disperser	RBG 2000 for non-cohesive powders and bulks as e. g. Pural NF, Pural SB, ISO A2 fine, ISO A4 coarse, different types of TiO2 and other powders from practice, mass flow: approx. 0.2–90 g/m³ (depending on powder size and density)
Valve opening times	50 – 500 ms	Pressure for pulse jet cleaning	Adjustable up to 6 bar _g
Dimensions	Approx. 1,200 • 630 • 1,700 mm (H • W • D)		