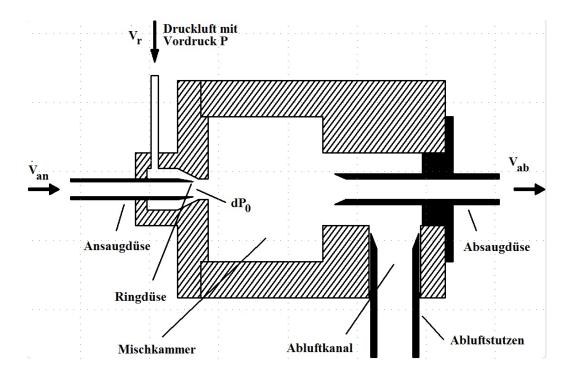
DC 10000



Die DC 10000 besteht aus vier kaskadierten speziellen Verdünnungsstufen mit dem Verdünnungsfaktor 1:10. Die Verdünnungskaskade DC 10000 besitzt einen Aerosoleingang und vier Aerosolausgänge. Je nachdem welcher Aerosolausgang mit dem Messgerät verbunden ist, wird das Aerosol mit den Verdünnungsfaktoren 1:10; 1:100; 1:1.000 bzw. 1:10.000 verdünnt.

Die DC 10000 kann mit allen gängigen optischen Partikelzählern (OPC) nach ISO 12501-4 oder optischen Aerosolspektrometern (OAS) nach ISO 12501-1 betrieben werden. Die DC 10000 ist bis zu einer Partikelgröße von ca. 5 μ m einsetzbar.

FUNKTIONSPRINZIP

VERDÜNNUNGSKASKADE MIT ELEKTRISCH BETRIEBENER PUMPE

Abb. 1: Funktionsprinzip

Die Ansaugdüse wird durch einen Ringspalt mit partikelfreier Luft mit dem Volumenstrom V_R umströmt. Dadurch wird nach Bernoulli ein Volumenstrom V_{An} in der Ansaugdüse erzeugt.

Der Verdünnungsfaktor V_F wird berechnet nach der Formel:

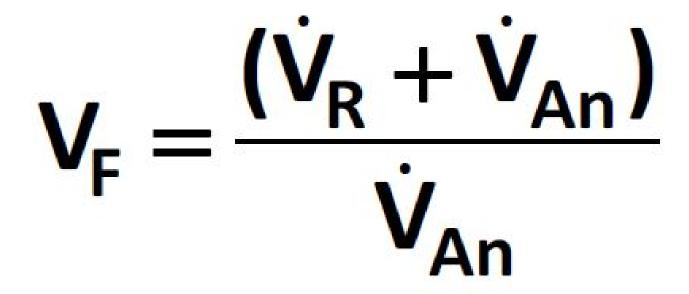


Abb. 3: Formel für den Verdünnungsfaktor V_{F}

Die DC 10000 benötigt keinen Druckluftanschluss. Für den Betrieb ist nur ein Stromanschluss nötig.

Gerätetyp	Verdünnungs		Chem.	Heizbar bis	dp _{max} in	Druckluft 4	Kaskadierbar	Spannung
	V _F	bis 10 bar	resistent	°C	μ m	- 8 bar		
DC 100	10, 100				< 5			115 V / 230
					_			V
DC 1000	10, 100,				< 5			115 V / 230 V
DC 10000	1000				< 5			v 115 V / 230
DC 10000	1000,				\ 3			V / 230
	10000							-
KHG 10	10		x	150	< 20	x	x	115 V / 230
1/11/01/05	10			450	20			V
KHG 10 D	10	×	×	150	< 20	×	X	115 V / 230 V
PMPD 100	100		×	200	< 5	×		v 115 V / 230
1 1011 100	100		^	200	\ 3	^		V 230
PMPD 1000	1000		x	200	< 5	x		115 V / 230
								V
VDD 10	1 - 10				< 10	X		115 V / 230
VKL 10	10				< 20	×	×	V
VKL 10 E	10		×		< 20	×	×	
VKL 10 ED	10	×	×		< 20	×	×	
	10	^	^		< 20			
VKL 10 V						X	×	
VKL 27	27				< 10	×	X	
VKL 100	100				< 2	x	x	

Tabelle 2: Eigenschaften Verdünnungssysteme

Tabelle 1: Technische Eigenschaften der Palas® Verdünnungssysteme

VORTEILE

- Kein Druckluftanschluss; nur Stromanschluss mit 115 230 V, 50 60 Hz
- Verdünnungsfaktoren 1:10; 1:100; 1:1.000; 1:10.000
- Einfacher Funktionstest vor Ort ist vom Anwender durchführbar
- Die Verdünnungsstufen sind mit allen gängigen Partikelzählern kombinierbar.
- Die Verdünnungssysteme von Palassind eindeutig charakterisiert. Dies wird durch ein Kalibrierzertifikat für jedes einzelne Gerät nachgewiesen.

NORMEN UND ZERTIFIKATE

DIN 1946-4, EN 1822, ISO 12501-1, ISO 14644-3, ISO 29463, SWKI VA 105-1

TECHNISCHE DATEN

Volumenstrom (Reinluft)	72 – 180 l/min				
Volumenstrom (Ansaugvolumenstrom)	2 – 5 l/min				
Elektrischer Anschluss	115 – 230 V, 50/60 Hz				
Isokinetische Absaugdüsen	2 – 5 l/min, 15 – 37 l/min				
Maximale Partikelgröße	< 5 μm				
Verdünnungsfaktor	1:10,1:100,1:1.000,1:10.000				
Abmessungen	Ca. 500 • 230 • 150 mm (H • B • T)				
Gewicht	Ca. 10 kg				

ANWENDUNGEN

- Aerosolverdünnungen in Filtermedienprüfständen, z. B. MFP 1000 HEPA und MFP Nano plus nach EN 1822 bzw. ISO 29463
- Aerosolverdünnung in reinen Räumen
- Aerosolverdünnung im Operationssaal zur Bestimmung des Schutzgrads nach SWKI VA 105-1 bzw. DIN 1946-4
- Erholzeitmessung nach ISO 14644-3

Mehr Informationen: https://www.palas.de/product/dc10000