MFP 3000 HF

Mit dem MFP 3000 HF ist es möglich, die relative Luftfeuchte von 10 bis 80 % oder die Temperatur von -10 bis 50 °C einzustellen. Die Anströmgeschwindigkeit gegenüber den Standardmodellen wurde auf einen Bereich von 4 cm/s bis 2 m/s erweitert.

Der MFP 3000 HF dient zur Ermittlung von filtertechnischen Kennwerten, unter realen Luftbedingungen, wie

- dem Differenzdruck des Filtermediums bei unterschiedlichen Anströmgeschwindigkeiten,
- · dem Fraktionsabscheidegrad und dem Differenzdruck bei definiertem Luftvolumenstrom,
- dem Differenzdruckanstieg und dem Fraktionsabscheidegrad während der Beladung bei definiertem Luftvolumenstrom,
- dem Staubspeichervermögen und der zugehörigen gravimetrischen Effizienz bei vorgegebenem Luftvolumenstrom und Differenzdruckanstieg.

VORTEILE

- Einstellbare rel. Luftfeuchte: 10 bis 80 %
- Temperaturregelung des Luftvolumenstroms: 20 bis $35 \,^{\circ}$ C (- $10 \,$ bis $50 \,^{\circ}$ C auf Anfrage)
- Erweiterung der Anströmgeschwindigkeit auf 4 cm/s bis 2 m/s
- Einbindung eines U-SMPS in den MFP 3000 HF erweitert den Größenbereich für die Messung der Filtereffizienz am MFP 3000 auf 10 nm bis 40 μm
- Quasi simultane Partikelmessung in Roh- und Reingas
- Messung von $C_{n max} = 10^6 \text{ Partikel/cm}^3 \text{ ohne Verdünnung}$
- International vergleichbare Messergebnisse
- Höchste Reproduzierbarkeit des Prüfverfahrens
- Einfacher Einsatz unterschiedlicher Prüfaerosole, wie z. B. SAE Fine und Coarse, NaCl/KCl, DEHS
- Höchste Rohgaskonzentrationen bis > 1000 mg/m³ ISO Fine oder > 5000 mg/m³ ISO Coarse mit Fraktionsabscheidegradmessung für Beladungsprüfung
- Ablaufprogramme für Druckverlustmessung, Fraktionsabscheidegradmessung und Beladungsmessung
- Einfach in der Bedienung

• Geringe Rüstzeiten https://www.palas.de/product/mfp3000hf

 Reinigung und Kalibrierung kann vom Kunden eigenständig durchgeführt werden

ANWENDUNGEN

- Prüfung von Filtermedien und kleinen
 Filterelementen in der Produktentwicklung und bei
 der Produktionsüberwachung mit variabler rel.
 Luftfeuchte und Temperatur.
- Simulation für die Prüfung von
 - KFZ-Innenraumfiltern oder Motorluftfiltern bei hohen Temperaturen, unter staubigen und trockenen oder extrem feuchten Bedingungen
 - Turbinenluftfiltern von Kraftwerken
 - Verhalten von Raumluftfiltern im Sommer (warm und feucht/trocken) und Winter (kalt/feucht/trocken)
 - Verhalten von Eisbildung im Filtermedium

TECHNISCHE DATEN

Aerosole	Stäube (z. B. SAE-Stäube), Salze (z. B. NaCl, KCl), Flüssigaerosole (z. B. DEHS)	Testfläche des Medi- ums	100 cm^2
Messbereich (Größe)	0,2 – 40 μ m (Promo [®] System), 5 nm – 1 μ m (U-SMPS System)	Messbereich (Masse)	Für SAE-Fine ohne zusätzliche Verdünnung bis 1.000 mg/m ³ (ISO A2 Fine)
Volumenstrom	1,2 – 72 m ³ /h - Saugbetrieb	Elektrischer Anschluss	400 V, 50 Hz
Differenzdruckmessung	0 – 20.000 Pa	Anströmgeschwindigkeit	4 – 200 cm/s
Druckluftversorgung	6 – 8 bar	Temperaturregelung	+20 - +35 °C (-10 - 50 °C auf Anfrage)
Luftfeuchteregelung	10 – 80 %	Abmessungen	2.300 • 800 • 2.000 mm (H • B • T)

NORMEN UND ZERTIFIKATE

ISO 5011, ISO/TS 19713, DIN 71460, ISO 11155-1, EN 779, ASHARE 52.2, ISO 16890