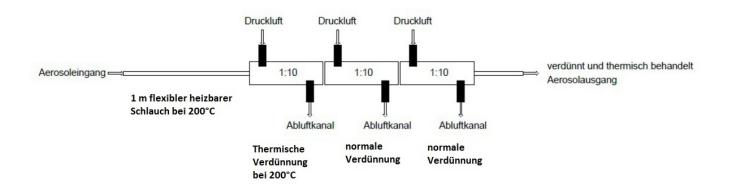
PMPD 1000



Bei dem PMPD 1000 Verdünnungssystem handelt es sich um ein Verdünnungssystem nach dem Ejektorprinzip, das speziell für die PMP-Applikation bzw. die PMP-Messkette entwickelt wurde.

Bei dem PMPD 1000 werden mittels eines Thermodiluters bis 200 °C volatile Partikel verdampft. Ein Verdünnungsfaktor von 1:1000 (siehe Abbildung 1) wird durch die Kaskadierung von 3 x Verdünnungsfaktor 10 erreicht.

FUNKTIONSPRINZIP

EJEKTOR VERDÜNNUNGSSYSTEM MIT VERDÜNNUNGSFAKTOR 1:1000

Abb. 1: PMPD 1000

Die PMPD Verdünnungssysteme bieten die gleichen Vorteile wie die anderen Ejektorverdünner der Palas[®] Produktreihe Verdünnungssysteme, wie z. B. einen zeitlich konstanten Verdünnungsfaktor.

Am METAS Institut in der Schweiz wurde die Eignung anhand des PMPD 100 für die PMP-Messkette bestätigt (siehe Messbericht Nr. 235-10383). Bei dem PMPD 1000 wird im Vergleich zum PMPD 100 eine zusätzliche Verdünnungsstufe kaskadiert.

Bereits im VDI-Bericht Nr. 1973, 2007 wurde messtechnisch nachgewiesen, dass mit den Palas® Verdünnungssystemen eine reproduzierbare Aerosolverdünnung bis zu V_F 100.000 möglich ist.

PMPD 1000 Stand: 03.10.2025 Seite 1 von 5

Gerätetyp	Verdünnungs	fa Rtor kfest	Chem.	Heizbar bis	dp _{max} in	Druckluft 4	Kaskadierbar	Spannung
	V _F	bis 10 bar	resistent	℃	μm	- 8 bar		
DC 100	10, 100				< 5			115 V / 230
								V
DC 1000	10, 100,				< 5			115 V / 230
DC 10000	1000 10, 100,				< 5			V 115 V / 230
DC 10000	1000,				\ \ \			113 V / 230 V
	10000							•
KHG 10	10		x	150	< 20	×	x	115 V / 230
								V
KHG 10 D	10	X	X	150	< 20	×	X	115 V / 230
PMPD 100	100		×	200	< 5	×		V 115 V / 230
T WII D 100	100		^	200		^		115 V / 250 V
PMPD 1000	1000		x	200	< 5	×		115 V / 230
								V
VDD 10	1 - 10				< 10	x		115 V / 230
VKL 10	10				< 20			V
						X	X	
VKL 10 E	10		X		< 20	X	X	
VKL 10 ED	10	x	x		< 20	x	x	
VKL 10 V	10				< 20	x	x	
VKL 27	27				< 10	×	×	
VKL 100	100				< 2	×	x	

Tabelle 2: Eigenschaften Verdünnungssysteme

Tabelle 1: Technische Eigenschaften der Palas® Verdünnungssysteme

VORTEILE

- Die Verdünnungssysteme von Palas[®] sind eindeutig charakterisiert. Dies wird durch ein Kalibrierzertifikat für jedes einzelne Gerät nachgewiesen
- Die Verdünnungsstufen der Serie PMPD liefern eine zeitlich konstante, repräsentative Verdünnung mit dem Faktor 100 bzw. 1000.
- Geringer Druckluftverbrauch (z. B. nur 96 l/min bei einem Verdünnungsfaktor von 1000 mit vier VKL 10 Systemen)
- Die Verdünnungsstufen sind mit allen gängigen Partikelzählern kombinierbar

TECHNISCHE DATEN

Volumenstrom (Reinluft)	54 – 135 l/min (geheizt auf 200 °C)				
Volumenstrom (Ansaugvolumenstrom)	2 – 5 l/min				
Elektrischer Anschluss	115 – 230 V, 50/60 Hz				
Isokinetische Absaugdüsen	2 – 5 l/min				
Maximale Partikelgröße	< 10 µm				
Thermodynamische Bedingungen für Verdünnung	400°C				
Druckluftversorgung	4 – 8 bar				
Verdünnungsfaktor	1:1.000				
Besonderheiten	Verdampfung leicht flüchtiger Bestandteile für Abgasmessungen gemäß VPR Calibration Procedure AEA/ED 47382/Issue 5 (Volatile Particle Removal - Efficiency), chemisch resistent, geheizt auf 200 °C				

ANWENDUNGEN

• Verdünnungssystem für PMP-Messkette

Mehr Informationen: https://www.palas.de/product/pmpd1000